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The asymptotic method presented here for one-dimensional nonlinear dynamic 
systems described in terms of partial differential equations with a small parameter, 
uses a known solution of the unperturbed problem as the basis for constructing 

an approximate solution on the prescribed variable range, which will tend to its 

exact value when the small parameter tends to zero. The method is based essen- 
tially on varying the arbitrary constants entering the unperturbed solution and 

constructing, for the slowly varying functions of the coordinate and time thus cre- 
ated, a system of differential equations the form of which depends on the degree 

of approximation. These equations remain nonlinear in the partial derivatives 
thus retaining the specific character of the problem and are, at the same time, 
easier to analyze than the initial equations. 

The substantiation of the method is reduced to proving a theorem oncontinuous 
dependence of the solution of the system of partial differential equations on the 
variation of its right-hand sides, and the proof is given here for hyperbolic and 
symmetrical parabolic systems. 

The procedure considered here embraces, as its particular cases, the known 
asymptotic methods of the perturbation theory [l, 21 of the geometrical optics 
[3, 41 and the methods [5. S] related to the method for ordinary differential equ- 
ations which are almost linear p]. 

1, Let us consider a system of differential equations of the form 

N(U)~U~+n(U,5,t,X,‘6)Ux+B(u,2,t,X,~)= 
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with the initial data 

r.4 (2, 6 p) Ir = 0 @, h !.4 (4.2) 

where tl = fi+, . . . . 7-b) is an unknown vector function, A is a square matrix, B and 
fk are ?t -dime~fonal vector functions, A, B and fk being as smooth the factors 
of their argumen& as will be later required, x is the spatial coordinate, t is time and 
I’ denotes the initial value curve (*) Let us also assume known the family of solutions 
of the unperturbed problem, i, e. of the system (1. I). (1.2) with p = 0 dependent on 
1 + P parameters 

V (z, t, f, z”) = v [C(l) (3, t, f, TO), C@) (f, a”)] V.3) 
(N (V (3, t, f, Z”)) i-n = 0, WI = tC, f24 t, x0, z”jt . . , 

* * * , ff, +rt, x0, f)l, 02’ = IG,l, * * . , G+,l) 

Here C@) denotes the generalized phases, x and t are known functions and C:ra) de- 
notes arbitrary constants. 

The aim of the proposed asymptotic method is to construct, on the basis of a known 
solution V of the unperturbed problem, an approximate solution u@@ (z, t) of the system 
(X.1), (1.2) satisfying on the finite intervals X and !r’ the following condition: 

It@‘“) ($7 t, p) - tt (4 r, pt> I < A% p(m) (M = M (X, i?)> @.a 

where 24 (s, t7 p} is t&e exact solution of (1. If, (1.2). 
Following the usual procedure adopted in constructing the asymptotic methods (see P3> 

we separate the problem into two parts. First we obtain the function u(mt satisfying the 
system (1.1). (1.2) with accuracy up to the terms of order pm This in fact is the ess- 
ence of the method, given in Sect. 2. Next we prove that I.@) satisfies (1.4) thus pro- 
viding the substantiation of the method (Sect. 3). 

The meshi essentially consists of varying the arbitrary coustants entering the unper- 
turbed solution (1,3) and conducing a system of partial differential equations for the 
resulting functions of the coordinate and time. The method is not subject to any limit- 
ations that may have been imposed on the initial system Q. I), the only requirement 
being that a sufficiently general family of solutions (1.3) exists when ~1 = 0. For this 
reason, all conditions which must be fulfilled by the system of equations considered in 
order to satisfy the inequality (1.4). may be formulated at the second stage of solutiou, 
namely when s~stan~ating the method, 

Varying the generalized phases and arbitrary constants of the solution {I. 3) in X, and 
z we construct the following m th ap~oximation for the system (1.1). (1.2) 

m 

*) Such a statement of the problem with the initial data includes the Cauchy and the 
boundary value problems as particular eases. 
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where the functions &*) to be determined as well as V both satisfy the initial values 

1 I’ - u 1~ < K’O’p, < K(-$ij+f 
r 

(j= i,2, . . ..?n) (4.6) 

following from (1.2) and (1.5). The reintroduced function Y (x, t, x, Z) (with p # 0) 
can be determined by the system 

where F(i) are, for the time being, unknown operators in x and Z I(*) and the initial 
values for V are given by (1.6). In determining FCS and WC*) we shall use the condition 
that t&) must satisfy the system (1. l), (1.2) with the accuracy up to the terms of order 

P m+l. 

Let us consider the operator 

N (U’“‘) = N (ZM) - 5 Fkjl 
k-=1 

and arrange, using the Taylor expansion, its terms in increasing powers of ii_ from 1 to 
r&Taking at the same time into account (1.5) and (1.7). we obtain 

A’ (u”“)) = lo [Lw(l) + F(l) + A (V) Vx - fL(V, V,, Vt)](lj + 

+P[L w@) + F@) -+ ID!” + A (V) w’:’ + A,’ (V) w$%oJ + + A$ (V) (zd”)” + 

-I- f+& (V, viz, V,) w(l) - fl, (V, I/‘,, Q (da? + Vx) - fq, (C yxs h) x 

x (WP + VT) + fs (V, v,, v~)]~*~ + l . l + pm [Lw” + I+) f WY) + 

+ A (V) w’K”-” + A,, (V) (w(~-~)w$‘) + . . . + w@‘w,~-~ + +- AWN (V) (td@’ X 

x w,m-u + . ..)J- 1.. + &), A~-l('V)((w(l))nr-lw~'-fqc(l/',lrx, Q x 

X&n-U.- . . . - fL(K v,, ~t)w~l)-fm(V* vx, qtrn) + 

-/- ~m'f[~~m'+ A(V) fdcrn' f -a .I(m+l) (W 

where the following notation is used 

L&o X ,g, + A(b')w$) + h('), P=Ip, +A& (1 Jo 

Setting the coefficients of pi (i = 1, 2 ,..., m) equal to zero we obtain from (1.8) tbe 
following linear system of equations for wCij 

(1.10) 
r;ul’i’ = ta’i’ (x, t, x, r) - F(‘) (i = 1,2,. . l ) la). j&‘“’ = f Jti, - &g(i) - F’“’ 

where hii* depends on w@‘, (Q 
@?i t & , W!? and rut (‘) (k = 9, 2, . . . . i - =i)and the 

operator L is taken over the fast variables x and t. For this reason, when w(*) in (1.10) 
are determined successively, 1~ and Z serve as parameters. 

If tif) and their derivatives determined by the problem (1.10). (1.6) are of order 1’ 

wy’, &‘, w(:), w!“, WC0 ru v (1 AI) 

l ) Such an approach for the case of partial differential equations was first employed in [5] 



308 M.I.Rabinovich and A.A.Rosenblium 

then the function g(m) (z, t, x, -c, p) = [ l(m+l) is of the same order and by virtue of 
the choice of w(i) the I?& th approximation u(m) satisfies the initial system (1. l), (1.2) 
with the accuracy up to the terms of order p,nL+r, i.e. it satisfies the system 

1 (u(m)) = 5 $fk + pm+lgW (1.12) 
k=l 

The problem of determining the restricted (in the sense of (1.11)) functions from (1.10) 
and (1.6) can be solved in the general case for certain right-hand sides of (1.10). The 

conditions which must be imposed on the right-hand sides of (1.10) to make the system 

solvable, are the initial conditions for determining the operators Fci). If this problem 

has a solution for any h ci), then we set F(u z 0 and our procedure becomes then iden- 
tical with the perturbation method. The manner of determining F(i) depends on the prop- 

erties of the operator N and on the form of V. 

2. Using what now follows as an important and a very general example. we give a 
method of obtaining Fci) for the case when the system (1. lo), (1.6) admits the existence 
of solutions periodic in x and t . (*) Let h (x, .t) and @ (x, z) denote the periods of 
these solutions with respect to t and t (h < X, @ < T). Let us formulate for w(i) a 

problem with periodic boundary conditions 

t,!?(i) (z + A, t, x, z) = w(i) (5, t + 0, x, ‘6) = zdi) (5, t, x, z) (2.1) 

Now, in addition to the boundary value problem (1. lo), (2.1). let us also consider a 
homogeneous boundary value problem with a conjugate differential expression 

Lyl= - lpt - (A”$)= + P*l$ = 0 (2.2) 

and boundary conditions which are also periodic 

9 (z + 4 t,.x, f) = ‘II, (G t + 0, X, z) - ‘Ic) (2, t, x, z) (2.3) 

where A and P are matrices. A- and O-periodic in x and t , while A* and P* are 
matrices which transpose into A and P. 

We shall show that the operator L* of the boundary value problem (2.2), (2.3) is a 

conjugate of the operator L of the boundary value problem (1. lo), (2.1). Scalar multi- 

plying LW by 9 and L*Q by w we can write 

($, LWl - (L”% 4 = ($9 41+ $ (44 -44 (2.4) 
(since (I#, Bw) = (B* I$, w) and (q, A w) =(A* 9, w)). Integration over the periods 
now yields 

%+A *+e x+h 

J J ((4, Lw) - (L’qJ, 41 fk?X!t = I‘ (4 [z, t + @I, w Lx, t + 01) uk -- 
r t x 

x+* t+e 
s (q~Wl,W4)~+ j (9La:+~,tltA[~+~,tlw[x+~,tl)~- 
z 

*) We note that if (1.1) has the form U) + A (z, t) uX = p/i (2, t, u) + . . . and the initial 
values are given on the characteristic, then the problem of determining FXfJ becomes 
an algebraic one irrespective of the form of the solution v. 
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t+e s (9 (4 49 A ix, t1 w [z, tl) dt = 0 (2.5) t 

Thus the following equation holds for any w and II, satisfying (2.1) and (2.3),respecc- 
ively 
r+R t+e 

j- $ (St Lw) &n-h = “T”‘$ (L*q, w) &at or [$, Lw] = [L**, w] (2.6) z z t 
and this equation defines the conjugate operator, i.e. L* is a conjugate of L. 

Since L*$ = 0 and Lw = h - F, from (2.6) we obtain 

[alp, w] = tq~, Lwl = [q, (h - F)l = 0 (2.7) 

Consequently, the necessary condition for a periodic solution of the problem (1.6). (1.10) 
(or a solution of the problem (1. l), (2.1)) to exist is,that h(i) - F(i) is orthogonal (in 

the sense of the integral (2.6)) to any solution $W of the conjugate problem (2.2). 
(2.3),i. e. the operators must satisfy the following system of integral equations 

%+A t+e 
s s (j&i’, *i(j)) &.dt = “1” ‘7 (Fci’, q$j’) d& 

or [h(i), q,?‘i’] = [F’:, $1. 
2 I 

(2.8) 

To formulate the sufficient conditions of solvability of the problem (1. lo), (2. l), we 
must define concretely the properties of the operator L. In particular, for the elliptic 

operator L it can be shown [8] that the conditions (2.8) are not only necessary, but also 
sufficient. They are also sufficient when the problem of determining w(*) by expanding 

hci) and UI(~) over the complete system of functions can be reduced to an algebraic 

problem [S, 61. 
Comparing the present method with the perturbation method we must note that the 

presence in the right-hand side of (1.10) of the terms F(*) not previously determined, 

makes it possible to obtain restricted (in the sense of (1.11)) or periodic solutions for 
?.&) in the cases when the perturbation solution method cannot be used. Indeed, in the 

perturbation method equations analogous to (1.10) are also obtained for the functions 
w(t) but their right-hand sides, i.e. h(i), are orthogonal to all solutions of the corres- 

ponding conjugate system only in isolated cases. In the physical sense, such orthogona- 
lity excludes the possibility of resonances appearing in h(i) and this is precisely the Con- 
dition of applicability of the perturbation method. In view of the fact that v, being a 

function of Ir. and r, varies in the present method from one approximation to the next, 
it is possible to utilize the freedom of choice of F(t) to determine v (2, t, x, Z) in such 

a manner that the resonant terms of order ~1’ are extracted from h(i) 
In the general case the conditions (2.8) lead to an infinite system of equations defin- 

ing F(i) In order for this system to have a solution, the solution V [ ] must contain an 
infinity of the generalized phases and arbitrary constants. However in the real problems 

the number p of different functions 9 (9) for which [n(i), go) ] = [E(i), *(J) ] + 0 
is obviously finite (this corresponds to a finite number of internal resonances in the system 

(1.10). (2.1)). Conditions (2.8) can therefore be satisfied if the number of the general- 
ized phases and arbitrary constants 1 + r > p (if 1 + r > p, then a part of these fun- 
ctions should be assumed predetermined from the initial data and therefore independent 

of Xand 7). 
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If ,? + r < p, the class of solutions of the unperturbed system must be enlarged so 
that 1’ + r’ = p. When 1 f r > p, we can use (2.8) to write the operators F(i) out 

in full and finally obtain equations for the generalized phases c,, . . . . CI and parameters 
C 1+1 . . . . CI+P directly from (1.7). 

Let us obtain these equations for the case when cr (3, t), . . . . Cl (3, t) are linear fun- 
ctions of z and t, with p = 0. Most of the problems on propagation and interaction 

of waves in nonlinear media [Y] are covered by this case. 

First we shall show the validity of the relations 

IV& $‘j’] = 6ij% (2.9) 

where ai is a number. 
Differentiating (1.4) with respect to Cc we obtain 

L (V,i’) = 0 (2.10) 

i. e. Vci are solutions of the homogeneous boundary value problem (1. lo), (2.1). 
Scalar multiplying (2.10) by 9 and (2.2) by x = Vci and subtracting the results obta- 

ined,we find (2, $),)t f(G A*%=0 (2.11) 

As the initial values for q can be chosen arbitrarily, we can assume without loss of gen- 
erality that the orthogonality conditions hold for t = 0 (*) 

%+-A 

s 
(z(i) [I, 01, #j’ [z, O])dz = 8 fj 5 (2.12) 

Then, integrating (2.11) with respect to x and t from x to x + A and from 0 to t , 
respectively, we obtain 

x+h tz A 
6ij +. x 

s 
(@ [z, t], g(j) [r, t]) dz + 

ss 
(z@) [z, t], A* [z, t] $,‘j’ [zz, t]).&zdt 

. 
x 0 x 

from which, taking into account the periodic character of 2, $ and A, we finally obtain 
.x IIt+0 

5 s 
(#, I#@) dz dt = f&,+x.+ 

T t 

Since cc are linear in x and t when p = O,we can assume that a*c,/& do not 

depend explicitly on x and t when p # 0 and solve Eqs. (1.7) for a*C, / at. Scalar 
multiplying (1.7) in which 

t+r 
a*v _=$+QV$- 

at 
i=l 

by 9’” we obtain, using (2. S), the equations for the parameters Cl+l, . . . . , Cl+r and 
the generalized phases C1 (5, t, x, z), . . . . CI (z, t, x, z) in the form 

ofi, 
@iygy- = [h”‘, lp’] + . . . + pm-1 [km’, tp’] (I=l+i,...,z+r) (2.13) 

l ) The initial conditions for zci) can be used as the initial conditions for tici) (provided 
they are orthogonalized) and this establishes a relation between the solutions of the in- 
itial and the conjugate problem. 



a*c* 
(2.14) 

c1 
i at 

- = I(--A(V)V,'- (J=i,2,...,1) 
k-1 

Equations for the amp~~des and phases of the waves interacting in a weakly normnear 
medium [5, S’J follow from (2.13) and (2.14) as a particular case. 

Relations (I, 4) and (Y&3) also yield equations for a group of methods analogous to the 
method of geometricaf. optics. To obtain those equations we expand C!$ into a series in 

2” 
c,= ~~~~~~~~~~~~ (t=~+f,...,~+Ff, ~t=~t”(;L;~&~)+ 

k==O 

+ g ~~k~~~~~~~k (r!=i,2,.*.,@- 

k-x 

and, instead of eqmffons for V,we seek tile equations for C$@ *Moreover, kQI in (I, 16) 
should be replaced by $$kf, where )rifkf = #SC@) (k = 2,3, .,.* m) and );(I) = kiQ -.. 
- A (V) dV / 8x, and the following expression used for F(*j : 

Inserting C%l5) into @, 8) and taking (2.9) intct account we obtain the expressions ana* 
logous to f2.13) and (2.24) 

We note that the system (2,13), (2.14) is more suitabie for use in analysis, as instead 
of (I -j- r) m first order equations it contains t $- r equations of order not higher than 
the degree of approximation. Being nonlinear, Eqs. (a. 16) and (2.17) cannot be reduced 
to the form (2.33) and (2.24), although the converse is always possible. 

5, To provide the ~~tant~a~on of the asymptotic method considcred,we must prove 
that for the system (X.1) the difference between the exact sofution and its mth approxm 
imation satisfjring the system (1,l2),is of the order pm on the interval in question. We 
shall prove this for the Cauchy problem. for the hyperbolic and symmeMcal parabolic 
systems. 

To make the notation more compact, we shall write the systems (ELI) and (1.12) in 
the form Uf j_ A f% 5, $3 & tL, -I- B (a, $7 $9 ttj = P$ f% %, % % f, PI (3-V 

ftt(“) + A (HQt I, t, p) z&~’ + B (u@‘$ ss f, p) = 

= pf (Em, t&g@* Fp, s, t, Ir) -j- ~~~~~~~ (z, b, p) f3.2f 
Here the dependence on the slow variables is included in the dependence on 5 and t, 
and a single term is taken from the right-hand side of (1.1). 
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Theorem 1. Let the systems (3.1) and (3.2) satisfy the following requirements in 

the region O<:t & 00, O,i;p <pI, - 00 < U, u,, L, E < 00 : 
1) A (u, I, t, p), B (u, z, t, p), f (u, uxr ut, 2, 4 p) and gem) (2, t, p) are con- 

tinuous in p, continuously differentiable in z and t and twice continuously differentiable 

in u, U, and ut. 

2) Solutions u (z, t, CL) and u fin) (Z, t, p) of the systems (3.1) and (3.2) exist. are 
continuous in p and twice continuously differentiable in x and t, and satisfy the initial 

conditions u (2, 0, p) = ‘pl (z, p) and u(m) (5, 0, p) =(pz (5, p),where ‘pi and ‘ps 
are functions belonging to the class Ca and ]‘pi - (~~1 < KpL”+l, where K is a constant. 

3) The systems are hyperbolic and all n characteristics passing through any point on 
the half-plane (5, t) in the opposite direction, intersect the abscissa. 

Then for any numbers X,, X, and T a constant M and a value p0 exist such,that 

ju(m)(z, t, u) - u (z:, t, IL) [ < Mp”+’ 

for all 0 < t < T 

x,ss x < x2,0 G p< po 

Note. If the function f is independent of uX and ut or depends on them linearly, 
then it is sufficient to require that the functions d, f and gtm) are continuuous in x and 
F and to limit oneself to showing the existence of solution and initial conditions belong- 

ing to the class Cl. 

Proof. We shall assume that u(“‘) and u are known. Substituting them into (3.1) and 
(3.2) we obtain identities in x and t. Let us subtract (3.1) from (3.2) 

(u(m) - u)t + A (z@) (u(@ - u)~ + [A (zL’~‘) -A (u)] uX + B (u’~‘) - B(u) = 

= p [j (LP), ui@, us”‘) - f(u, ux, ut)] -/- pm+‘g@Q(z, t) (3.3) 

Now set u(‘@ - u = u). By the Hadamard lemma on finite increments we have 

A (u(m)) - _A (u) = c (U(m), u) w = c (5, t, P) UJ 

B (u’“‘) - B (u) = E (u(“‘), u) w = E (I, t, p) w 

f (u@), up, zp) - f (u, u** ut) =fa(zm, u, up, u*, z4jm), ut) w + 

+ f2 (P) u, zpf”‘, z&, zp, ut) w, + flpy 24, uy, u=, up, q) wt 

Functions C, E, fl, fa and fs are continuously differentiable, and depend in the end on 
I, t and JJ. Taking these relations into account we can write (3.3) in the form 

[Z--Pf1lwt+[A--~ILf~lzur +[Cu,+E-~falw-P ?I.+1 (TN g (3.4) 

where I is a-unit matrix. Since fl and f. are continuous, a value p, exists such that 
for all 0 < P < P,$ system (3.4) remains hyperbolic in a bounded closed region D which 
shall be defined later. In addition there exists a linear transformation w = Hw, with a 
continuously differentiable nonsingular matrix B which reduces (3.4) to the form 

Wit + A(6 29 P&w,+ Bl(& t, p) ul= pm+lgl (5, p, t) (3.5) 

where Al is a symmetric. nonsingular matrix [lo] of class 0. 
Let us perform the substitution w1 = eat z . Then (3.5) yields the following expression 

for 2 (x, t) : 
zt + &a, + (BI + al) 2 = pm+le-atg~ (3.6) 

By virtue of the symmetry of the matrix A, the identity 
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(z, A,& = kc, A,4 + (z, AA) + (~1 AL+) 

implies 
2 (I, ‘412,) = (2, AZ), - (z, Al,4 (3.7) 

Following Courant [lo] we scalar multiply (3.6) by z and take (3.7) into account, to 
obtain 

s/a (z, z)t + l/z (zs AZ), + (z, [a+ uz - ‘/z&J 2) = pm+1 (2, g2) 

go (z. t) = e-“‘gr (5, t) 
(3.8) 

Let us choose the value of the parameter a large enough for the matrix Rz = B1 + 

+ aZ -- ‘IzA I DI to be positive definite in the region D; 0 < t f T, Xmi, < rc < Xmax 
(0 < p 5 p,,), where Xmin is the abscissa of the point of intersection with the r-axis 

of the characteristic passing through the paint 

(X,, T) at the smallest angle of inclination 
relative to this axis and X,,, is the abscissa 
of the point of intersection with the x -axis 
of the characteristic passing through the point 
(X,, T) at the greatest angle of inclination 

X to the 2 -axis (see Fig. 1). 

4 c LL Let x1 and xz be any numbers defined by 

Fig. 1. 
X, < x1 < x2 -< X9, and t, any number 

0 < t, < T. We draw the extreme charac- 
teristics through the points QI(rl, to) and Qz (z&J and denote by Pr and P, the corres- 

ponding points of intersection of these characteristics with the abscissa (see Fig. 1). 

Let us now integrate the identity (3.8) along the curvilinear trapeze PIPsQzQI. Applying 
the Green formula we obtain 

1 1 * - 
2 cc 

[(z, zh + (z, AIZ),] dxdt = - 
2 . . I 

[(z, z) n, + (z, ‘41~) n,l ds = 

PiPaQa QI PIP~QIQI 
1 1 

=- 
c 

z2dx - - 
2 . c 2 . 

z2dx + f 
c 

[(z, z) nt + (z, hz) 4 ds = 

QIQZ P9r PIQI+Pz QZ 
1 1 =- zzdx - - (3.9 
2 c c 

Qh 
2, 

z=dx + + ’ { 

PlP2 P,Q,+P,Q, 

n, (+I, + $Z]z) ds 

where nx and nt denote the components of the unit normal. 
Let us denote by I., the largest and by h, the smallest eigenvalue of the matrix A, 

On the characteristic P,Qr we have nt I n, = - h, and on PaQa we have nt / n, = - ha 

For a symmetric matrix 

h*= ,a,(*, hz = min k.$l 

Therefore hl (z, .z)>(z, AIZ) and I.2 (z, z) < ( ZI, AZ) or (z, [A - - hlz] Z) g 0 and (z, [AI - 

- AZZ] z) > 0. Since n, < 0 on PI& and n, > 0 on PzQz, we have 

(3.10) 

Moreover, by virtue of the initial conditions 
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5 Sdx < K$Xp2 cmtl), x = x2 - x,, Kl = K 11 H-111 (3.11) 
PsP* 

where 1 tr-’ fl denotes the norm of the matrix H-1 The matrix 3, is positive definite, 
therefore a 

1\ 
(z, Baz) dx dt 3 0 (3.12) 

. 
PAQrQt 

Taking into account (3.9) - (3.12) and integrating (3.8). we obtain the inequality 

i? 

m 22 (x, toj dx < pmtl (z, gzj dx dt + + K13Xp-+‘) (3.13) 
xt 

Let us denote by MI f 2 the maximum value of the modulus of the vector function g, 
in the region D, i.e. MI = 2 max 1 Pt ~2 (5, t, pL) I, @, t) E JI (@ G I” < vo). Then 

Xl kl 

s 

‘91 (0 

z2 (2, to) do: < &&pm+’ 
c c 

dt j z (x, t) 1 dx f K$Xpa(m+l) (3.14) 
. 

~lfj~~ 
where x = ‘PI ‘;;I is the equation of rhes characteristic PIQI and x = ‘pa (t) of Pa&. The 
integral Y1 U) 

s 
I z (z, t) t dz 

being a function of t, is of the same order of magnitude. namely C;m+l for all values 
of I including t = 6 . 

Indeed, let it attain its maximum value at some t* (0 < t+ g to). Setting in (3.14) 
2 = t*,wt? obtain x,=‘Pr (la) 

,. Qt (1’) 

I 

z-3 (z, t,,) dx <TM~L~+~ 
s 

1 z (5, t’) ] dx + K1”Xp 2 (m+l) 

x,=& Co) 91 0’) 

By virtue of the Schwartz inequality we have 

Setting to = t*, i.e. integrating (3.8) along the trapeze P,P&,Rl where R1 (cpr (t*), t*) 
and Rs ((p, (t*) t*). we obtain 

Qs ti*) 

U 

QP y*, 

I z (2, t) i dx ‘< TXMlumii \ ( z (2, t*) 1 dx t_ K?Xa$ (On+l) (3.15) 

‘PI it*, Vprj(‘) 
from which follows 

Q+'> c 1 z (x, t*) 1 dz < M.a~m+‘s Ma = (3.16) 

‘p,jf*) 
By the deffnition of t* we have 

‘pa to) c QP, (,‘*, 

1 z (5, to) I dx Q \ 1 z (x, t+) 1 dx 

Q,ib) 9, it*, 

or, with (3.16) taken into account 
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%a s 1 z (z, t) I dz < &fa~~+~ (3.57) 
Xl 

Having obtained the estimate for the integral and taking into account the bouudedness 
of z (2, t) and 4% (I, t) in the region D we can estimate the integrand function. If the 

value of the fntegral is fixed,the maximum value of the integrand function belonging to 

class O- is 9 

I 
]zjdx= tmax 12 II* 

max t 2 1% 
XI 

Consequently, in the general case we have 
Xl *a 

IzPGmax Islx lzlds<max l~l lzldz 
s c * 
Xl Xl 

or, in accordance with (3.17), 

1 x I* < max 1 wzs 1 MA~~+~ (3.18) 

This yields the following estimate for ~1 (5, t) 

I EDI 12 < max 1 wlx 1 M2eaTpmt1 (SW 

It remains to estimate w (2, t). Since witl = EP%u, we have 

max lu?,I~I~H-lI[max[no,I+IjH,-l~lmaxIwI 

let us denote max 1 wy I / max 1 w 1 = S. Taking into account (3.19) we obtain 

Iw12~U~IlaI 241”<lI~Ila~l~-1U~~-ll~~-1D~2~aT~~~I~I 

J Em - I I ( bfp1, M = T XeaT 11 H ia (11 H-1 (1 S + u H%-l It) 4 (Aft+ j/52$) 

which completes the proof of the theorem. 
The parameter cc appearing in the proof characterizes the degree of instability of the 

homogeneous system iv (u) = 0. The asymptotic method can be applied to systems 

of arbitrary degree of instability, However, when the nearly periodic solutions of (3.1) 
are considered, a must be of the same order of magnitude as p, in which case ear is of 
the order of unity when T < 1/ p. Then, with H, &’ and gs having the order of unity 
on anv finite intervals of 5 and t, the difference u(m) - u is of order pm on the interval 

XT --l/p(e.g, Xui/l/r, T-l/J$i. 
From the proof given above we can infer that an analogous theorem holds for symme- 

trical parabolic systems which have at least two characteristics at each point of the half 
plane x, t On moving in the opposite direction all characteristics intersect the abscissa 
axis and the right-hand side of (3.1) is independent of u, and uf. In this case we obtain 
in place of (3.4) the following symmetrical system 

wt + Aw, + Wu, + E - pf,Jw = pm+” gcrn) 

The substitution w = fiw, ceases to be necessary and all the arguments that follow, 
remain in force. 

Theorem 2. Let the system 

ut + A (u, cr, t, p) u, + B (u, t, t, II) = (-J (3.20) 

satisfy. in the region - a0 ( U, z, ( 00, 0 (t= t, p < oo,the following conditions: 

1) A-is a symmetric matrix continuously differentiable in all its arguments. 
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2) B is continuous in x and t, and continuously differentiable in u and p. 
3) At least two characteristics pass through each point of the half plane x, t and, on 

moving in the opposite direction. all characteristics intersect the x -axis. 

4) II (z, 0, FL) = rp I& p) E Cl. 
Then u (z, t, w) is a continuously differentiable function for all 0 & p < 00 
Proof. Let u (z, t, pj and u (2, t, p + APL) be known solutions of the system (3.20). 

Subtracting the corresponding identities we obtain 

uf (II -!- AN - “f (PL) + /t [u (II + 4h t’ + WI [ux (P f Ap.) -- ux (u)] -+ 

+ (-4 [u (p + hp.)* u + Au1 - A [d (II), ~1) u+ (IL) + B [u (EL + AP), p + Au] - 

- B fu (P), IL+ Apl f B lzi 0% p + Apl - 13 Iu (it), P] = 0 

(the arguments z and t are omitted here). Applying the Hadamard lemma to the corr- 

esponding differences we find 

but + A&c + C Oh API u& + V 9% AN QAP 4 E (P, AFL) Au + F (p, Apl Ap =u 

where C, D, B and F are continuous functions of 2, t, p and Au. Treating AU = u (p f 
+ Ap)- u (p) as an unknown function, we obtain for it the following linear system: 

Aq + AAu, + b-Au = ApLf", B” = Cu, + E, f” = - Du, - F (3.21) 

which satisfies the conditions of Theorem 1. A constant C’ therefore exists such that 

IAuI<C”]AP].i.e. u (3, t, u) is continuous in p. 
Dividing (3.21) by Al* we obtain 

($+A ($$X+Ho $=I0 (3.22) 

which we shall now consider together with the linear system 

:t+Azx+Bz=jo (3.23) 

The solution z (2, t, p, Ap) of the latter is a continuous function of the parameter AP, 
including Ap =. 0. Considering this solution with the initial conditions of (3.22) we ob- 

tain, by virtue of its uniqueness, the solution 2 (x, t, P, Ap) = AU I Ap, and the follow- 
ing limit exists 

lim z (I, t, p, Ap) = s (2, t, pt 0) = au/dp 
&‘+o 

To prove that uF is continuous we set in (3.22) 

Ap + 0, a~, 1 at + Mud ax + f A,u, +I$] up = - BP - _-lpux 

This system. linear in ziUt satisfies the conditions which ensure that it solutions are 

continuous in n. Thus u (5, t, p) E Cr. 
We shall show that if ~(~1 is chosen in such a manner that a bounded solution of (1.10) 

for I&) exists, then under the restrictions ensuing from Theorem 2, I_&“‘) exists defined 

by (1.5) and (1.7) and satisfying (1.12). Since C1, . . ., Cl+,. can be assumed to be infi- 
nitely differentiable functions of x and ‘t , conditions of the Theorem 2 hold for the 

coefficients of the equation Lz#~ = htl’ - FcrJ and & (I, t, x, rf E CL. Consequently 
Q2’ [&I ~a(‘)] = !~‘a) (r X’ -7 t x, 2) E C1 and w(~) I 7 E Cr. In general, since IX:“) are derer- 
mined with the heln of recurrent relations, then w(~-‘) E Cl implies that ,(i) E ci 

(i = 2, 3, . . ., m) Taking into account the composition of g!m! (x, 5, x, t) we find that 
gtmJ f C”, i. e, conditions of the existence theorem hold for (1.12). 
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Applying Theorems 1 and 2 to the systems (1.1). (l.l2),we are in position to state 
the basic result in the form of the following theorem. 

Theorem 3. Let the system (1.1) be hyperbolic in the region 0 < t, T < oo 
- 00 < u, &, ut, z, x < oo and satisfy the following requirements within this 
region: 

(1) A? B and fk are differentiable m -t ‘l times in U, U, and ut ,and continuously 
differentiable in z 2, x and Z. 

(2) A solution of (1.1) exists, twice continuously differentiable in x and t,and con- 

tinuous in 1”. 
(3) Through each point of the (2, t)-plane pass n characteristics and when moving in 

the opposite direction, all these characteristics intersect the s-axis. 

(4) Let z&cm) be defined by the formulas (1.5) and (1.7) where w(i) are solutions of 
(1.10) and F(i) are chosen so, that solutions of (1.10) restricted in the sense of (1.11) 
exist when the initial conditions follow from 

I di) (5, 0, p) - u (x, 0, p) I< Kci)pi+l (i = 1,x, . . . , m; K@) =I c3nstj 

Then cl,, exists such that for all 0 d p < p,, and x. t taken from the interval 

XT -i/p I U@) (5, t, p) - u (z. t, p) I< My_P 
The magnitude of the constant MW depends on max ) g(m) (z, t, x, Z) 1 and estim- 

ation of the latter represents a problem luteresting in itself. 
Analogous assertion is valid for the parabolic system 

u1 + A (u, z, t, x, T) u, + B (u, z, 4 x, z> = 2 ~‘fi (w 5s t, xv z) 

satisfying the following conditions in the region - 00 < u, z, 2 < 00; 0 < z, t < 
<co: 

(1) A, B and fi are differentiable m +I times in u and continuously differentiable 
in 2, t, x and ‘c. 

(2) A solution u (5, t, p) E c1 of this system exists. 
(3) At least two characteristics pass through each point of the half plane (x, t) and, 

when moving in the opposite direction, all these characteristics intersect the z-axis. 

The authors express their gratitude to A. V. Gaponov for continued interest in this 
work and to V. N. Gol’dberg for useful discussions. 
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LIAPUNOV SYSTtM WITH DAMPING 
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A nonlinear, autonomous system of order ( 2k + 2 ) is perturbed by application 
of damping which is analytic and sufficiently small in norm. The system we con- 
sider resembles a Liapunov system [l], in a different sense however to that given 
in p]. The perturbed system is transformed in such a manner that the unperturbed 
system transforms into a quasilinear, nonautonomous system of order 2k [33. If 
the general solution to the unperturbed system is known, then the process of in- 

tegration of the system of variational equations can be reduced, according to 

Poincare [4], to quadratures and this is illustrated with the example of a plane 

spring pendulum. 

1. Trrnaformrtion of thr equation: of motion, Consider a class of 
Liapunov systems (see Cl], Sect. 33) with damping, described by the following system 
of equations: 

@u/d+ + u - U (u, u , VI, . . . . vL, VI , . . . . vL ) = - 2ePo (u . VI , . . . . vk’) (1.1) 

d=v,/dz? + UxlIl~ + . . . + axkVk - v, (U, U , VI, . . . . “p 2’1 , . ..I vk ) = 
=-22eFX(u, VI ,..., vr) (e>O,x=l, . . . . k) 

Here a dot denotes a derivative with respect to r ; a = axi (x,j = l,...,k) are real con- 

stants; u, VI ,..., vk, Fo, F, ,..., Fkare real analytic f:xnctions; the expansions for Fo, FI, 
. . . ,Fk begin with the terms of at least first order and those for U, V,,. . . , Vk with terms 
of at least second order. We shall assume that the unperturbed system (1.1). i.e. (1.1) 
in which a = 0, admits a first integral which must be an analytic function of the variables 
u, u , t’l,..., “k, v1 T-.., uk and have the form [l] 

H = u’s + ua + W (VI, . . . . vk, VI , . . . . vl( ) + 

+ s# (u, u , v1, *..I vk, vl , ..*I vlc ) = P (P > 0) (1.2) 

where W is a quadratic form and Sa is a set of terms of order not lower than the third. 


