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The asymptotic method presented here for one-dimensional nonlinear dynamic
systems described in terms of partial differential equations with a small parameter,
uses a known solution of the unperturbed problem as the basis for constructing

an approximate solution on the prescribed variable range, which will tend to its
exact value when the small parameter tends to zero, The method is based essen-
tially on varying the arbitrary constants entering the unperturbed solution and
constructing, for the slowly varying functions of the coordinate and time thus cre-
ated, a system of differential equations the form of which depends on the degree
of approximation, These equations remain nonlinear in the partial derivatives
thus retaining the specific character of the problem and are, at the same time,
easier to analyze than the initial equations,

The substantiation of the method is reduced to proving a theorem on continuous
dependence of the solution of the system of partial differential equations on the
variation of its right-hand sides, and the proof is given here for hyperbolic and
symmetrical parabolic systems,

The procedure considered here embraces, as its particular cases, the known
asymptotic methods of the perturbation theory [1, 2] of the geometrical optics
[3, 4] and the methods [5, 6] related to the method for ordinary differential equ-
ations which are almost linear [7],

1, Let us consider a system of differential equations of the form

N@y=u,+ A@,z,t,% 1t)u, + B, z,t,%, 1) =
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= 2 pkfk (ut Uy Uy X, t, %o T) (i‘l)
k=1
(r=y"+pz, v=1"4pt 0 p 1)

with the initial data
u(z, ¢, plp=0 (@ ¢t p (1.2)

where ¥ = (Uy, .... Uy) is an unknown vector function, A is a square mawix, B and
fr are n-dimensional vector functions, A, B and f, being as smooth the functions
of their arguments as will be later required, x is the spatial coordinate, ¢ is time and
T' denotes the initial value curve (*) Let us also assume known the family of solutions
of the unperturbed problem, i.e, of the system (1,1), (1.2) with § = O dependent on
! 4 r parameters

Vi, t,x°, 1% =V [CO (z,¢t,%°, %), CD(X°, 1)) (1.3)

NV (@90, ™ =0, CO=[C (x%,1),...
e ey Cl (.2'2, ‘t: x°, to)]& 0 = Iciﬂs RIRY Cl-x»r])

Here C) denotes the generalized phases, & and { are known functions and O de-
notes arbitrary constants,

The aim of the proposed asymptotic method is to construct, on the basis of a known
solution V¥ of the unperturbed problem, an approximate solution u(™ (z, £) of the system
(1.1), (1.2) satisfying on the finite intervals X and 7" the following condition:

lum (2, £, p) —ulz, 1, W< mp™ (M =M(X, I) {1.4)

where u (%, £, p) is the exact solution of (1,1), (1.2).

Following the usual procedure adopted in constructing the asymptotic methods (see [T])
we separate the problem into two parts, First we obtain the function u{™ satisfying the
system (1,1), (1.2) with accuracy up to the terms of order pu™  This in fact is the ess~
ence of the methad, given in Sect, 2, Next we prove that u(™ satisfies (1, 4) thus pro-
viding the substantiation of the method (Sect, 3),

The method essentially consists of varying the arbitrary constants entering the unper-
turbed solution (1, 3) and constructing a system of partial differential equations for the
resulting functions of the coordinate and time, The methed is not subject to any limit-
ations that may have been imposed on the initial system (1.1), the only requirement
being that a sufficiently general family of solutions (1, 3) exists when p = 0, For this
reason, all conditions which must be fulfilled by the system of equations considered in
order to satisfy the inequality (1.4), may be formulated at the second stage of solution,
namely when substantiating the method,

Varying the generalized phases and arbitrary constants of the solution {1, 3) in ¥ and
T we construct the following m th approximation for the system (1, 1), (1.2)

um = ¥ {6(1) (z,2, % ¥, o® )1 + Z piw(d (e, t, ¥, T) {1.5)

i=1

*) Such a statement of the problem with the initial data includes the Cauchy and the
boundary value problems as particular cases,
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where the functions wt® to be determined as well as V both satisfy the initial values

|V =l < KO, ]H—Z‘; W —u| <KOWH =tz m  (16)

il
following from (1,2) and (1, 5). The reintroduced function V (z, £, yx, ) (with p = 0)
can be determined by the system

i av / g% /] @
= +2 piF® [y, v, Ve . oo Vel K‘a—z=737+l"3$) 1.7y
i==l
where F® are, for the time being, unknown operators in ¥ and T *(*) and the initial
values for V are given by (1.6). In determining F(}) and w() we shall use the condition

that (™ must satisfy the system (1,1), (1,2) with the accuracy up to the terms of order
pmH,

Let us consider the operator

0
N (um) = N (™) — 3, pkfy
Kl
and arrange, uvsing the Taylor expansion, its terms in increasing powers of [t from 1 to
m.Taking at the same time into account (1, 5) and (1, 7), we obtain

N (@m) = p (Lw® 4+ FO 4 AWV)Vi— .V, Vi Vil +
+ [ Lw® 4+ FO 4 0 + A1) 0 1 Ay (V) 00 4 - 4,7 (V) () +
I,V Va V)ud —f, (V, Ve V) @ + Vi) — f, (Vs v,, Vi x
X @+ Vo + [ (V, Ve VO A+ - o+ b7 [Lootm + F™ 4 ™D 4
F AWV U 4, (V) om0 L w00 LA (V) (e X
X0 L) g A ) (@O — fy, (7, Ve V) X
X WD L fo s (V, Vi V) 00 — i (V, Vi V)] )+

+ 4 (™ - AV ™ + L e (1.8)
where the following notation is used
Lu® = u® + A(V)uwd + Pud, P=B, +4,V, (1.9)

Setting the coefficients of pt (i = 1, 2,...,m) equal to zero we obtain from (1, 8) the
following linear system of equations for w* (1.10)

Lw® = b (z,t,5, ) — FP G(=12,. ‘..m) A =1 )y — Lt — FY
where k(. depends on ™, w, w®, vl and W k=1, 2, ..,i— 1) and the
operator L is taken over the fast vanables Z and . For this reason, when wi#) in (1,10)
are determined successively, ¥ and T serve as parameters,

If w and their derivatives determined by the problem (1,10), (1.6) are of order V

0, w®, W, wd, wd ~ V (1.11)

*) Such an approach for the case of partial differential equations was first employed in [5]
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then the function g™ (z, ¢, X, T, ) = [ l(msy) is of the same order and by virtue of
the choice of w() the mth approximation u(™) satisfies the initial systemn (1,1), (1.2)
with the accuracy up to the terms of order p™+1, i, e, it satisfies the system

m
N (um) = 2 ef ) - pmtigm) (1.12)
k=1
The problem of determining the restricted (in the sense of (1,11)) functions from (1,10)
and (1,6) can be solved in the general case for certain right-hand sides of (1,10), The
conditions which must be imposed on the right-hand sides of (1,10) to make the system
solvable, are the initial conditions for determining the operators F(®, If this problem
has a solution for any A(?, then we set F(®) = ( and our procedure becomes then iden-
tical with the perturbation method, The manner of determining F(?) depends on the prop-
erties of the operator IV and on the form of V,

2, Using what now follows as an important and a very general example, we give a
method of obtaining F() for the case when the system (1.10), (1,6) admits the existence
of solutions periodic in x and ¢, (*) Let A (¥, 1) and © (y, T) denote the periods of
these solutions with respect to 2 and £ (A <€ X, © <<€ T). Let us formulate for w® a
problem with periodic boundary conditions

wd (z -+ At o, T) = wd) (x’ t+0,%, T) = w® (.’C, L% T) (21)

Now, in addition to the boundary value problem (1,10), (2,1), let us also consider a
homogeneous boundary value problem with a conjugate differential expression

Lrp= — p, — (4%); + P*p=0 2.2)
and boundary conditions which are also periodic
lP($+A, L % T) =‘lp(x7t+®’ % 17) 7—“]’(3, L % ’C) (23)

where A and P are matrices, A- and ©-periodic in x and f, while A* and P* are
matrices which transpose into 4 and P.

We shall show that the operator L* of the boundary value problem (2,2), (2.3)is a
conjugate of the operator L of the boundary value problem (1,10), (2,1), Scalar multi-
plying Lw by P and L*P by w we can write

(P, Loy — (L*4, 1) = (9, ), + - (py 4w) (2.4)
(since (P, Bw) = (B* ¢, w) and (y, Aw) =(A4* ¥, w)). Integration over the periods
now yields
x+A 140 x+A
{0 L) — @, w)ydadt = | (2.t + 0),wz,t + O)) dz -
t

x x

x4+A 146
[ @Wizthwizhde + | @le+ AL, Alz+ A wic+ A, ) d—
x t

*) We note that if (1,1) has the form u; + 4 (2, t) ux = uf, (z, ¢, u) + ... and the initial
values are given on the characteristic, then the problem of determining #*/ becomes
an algebraic one irrespective of the form of the solution V.
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t+6e
[ @iz,0, A1z, 01wz, ) dt =0 (2.5)
t
Thus the following equation holds for any w and ¢ satisfying (2, 1) and (2, 3),respect-
ively
x4-A. 46 x+A. (46
§ ol wtwdzat= | | (4, w)dedt o 19, Lwl = [L*y, 0] (2.6)
x t x t

and this equation defines the conjugate operator, i,e, L* is a conjugate of L.
Since L*y = 0 and Lw = h — F, from (2, 6) we obtain

[L*yp, w] = wp, Lw]l = [, (b — )] =0 2.7)
Consequently, the necessary condition for a periodic solution of the problem (1,6),(1.10)
(or a solution of the problem (1.1), (2.1)) to exist is,that h(} — F() is orthogonal (in
the sense of the integral (2, 6)) to any solution () of the conjugate problem (2, 2),
(2.3),i. e, the operators must satisfy the following system of integral equations

x4A 146 atAtte
j (1D, ) dadt = j S (FD, Py dzdt (2.8)

x 1 x '
or [KD, 9] = [FD, ).

To formulate the sufficient conditions of solvability of the problem (1,10),(2.1), we
must define concretely the properties of the operator L. In particular, for the elliptic
operator L it can be shown [8] that the conditions (2, 8) are not only necessary, but also
sufficient, They are also sufficient when the problem of determining w® by expanding
R® and w® over the complete system of functions can be reduced to an algebraic
problem [5, 6],

Comparing the present method with the perturbation method we must note that the
presence in the right-hand side of (1.10) of the terms F® not previously determined,
makes it possible to obtain restricted (in the sense of (1,11)) or periodic solutions for
w in the cases when the perturbation solution method cannot be used, Indeed, in the
perturbation method equations analogous to (1,10) are also obtained for the functions
w®  but their right-hand sides, i.e, h@), are orthogonal to all solutions of the corres-
ponding conjugate system only in isolated cases, In the physical sense, such orthogona-
lity excludes the possibility of resonances appearing in A() and this is precisely the con-
dition of applicability of the perturbation method, In view of the fact that V,being a
function of % and v, varies in the present method from one approximation to the next,
it is possible to utilize the freedom of choice of F( to determine V (z, ¢, %, T) in such
a manner that the resonant terms of order W* are extracted from A®)

In the general case the conditions (2, 8) lead to an infinite system of equations defin-
ing F® In order for this system to have a solution, the solution ¥ [ ] must contain an
infinity of the generalized phases and arbitrary constants, However in the real problems
the number p of different functions P\ for which [n(), ) ] = [R®), $W ] 5= 0
is obviously finite (this corresponds to a finite number of internal resonances in the system
(1.10),(2.1)), Conditions (2, 8) can therefore be satisfied if the number of the general-
ized phases and arbitrary constants [ + r 2> p (if [ + r >> p, then a part of these fun-
ctions should be assumed predetermined from the initial data and therefore independent
of % and 7).
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If | + r <C p,the class of solutions of the unperturbed system must be enlarged so
that I’ + r' = p.When [ +r > p, we can use (2, 8) to write the operators F() out
in full and finally obtain equations for the generalized phases Cj, ..., C; and parameters
Ci41 +-os Crer directly from (1,7),

Let us obtain these equations for the case when C; (%, 1), ..., C; (, t) are linear fun-
ctions of x and ¢, withp = (0, Most of the problems on propagation and interaction
of waves in nonlinear media [9] are covered by this case,

First we shall show the validity of the relations

[V;l., P9 = 8y (2.9)
where o is a number,
Differentiating (1, 4) with respect to C; we obtain
L(V,)=0 (2.10)

i.e., V. are solutions of the homogeneous boundary value problem (1.10), (2.1).
Scalar multiplying (2,10) by ¥ and (2,2) by z = V _and subtracting the results obta-

ined,we find (z, W + (2 A"\P)x=0 (2.11)

As the injtial values for ¥ can be chosen arbitrarily, we can assume without loss of gen-
erality that the orthogonality conditions hold for ¢ = 0 (*)

aH-A
g (1 [z, 0], ¥ [z, 0))dz = 8 3% 2.12)

x

Then, integrating (2,11) with respect to = and ¢ from = to z 4+ A and from 0 to ¢,

respectively, we obtain
x+A t x:

A
GU%= S @D [z, t], $P [z, t}) dx+S J§ D [z, t], A% [z, t] YD [z, t]).dzdt
x
from which, taking into account the penodlc character of %, ¥ and 4, we finally obtain

A 140
§ S @, 9Py dzdt = 814

x
Since C; are linear in z and ¢ when p = O,we can assume that d*C,/adt do not
depend explicitly on z and ¢ when P <= O and solve Eqs, (1.7) for 9*C; / 8¢. Scalar

multiplying (1, 7) in which Lir
oV ’
ot = + 2 Vci

by @ we obtain, using (2, 9), the equations for the parameters Cy4y, ...., Cp4, and
the generalized phases C, (z, t, %, T), ..., C; (%, ¢, %, T) in the form

ac;

aiot = (A, 4P} 4 PP =ttt 1k (243)

%) The initial conditions for z(? can be used as the initial conditions for v (provided
they are orthogonalized) and this establishes a relation between the solutions of the in-
itial and the conjugate problem,
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(2.4%)
a% C i
Ot = [(— A(V) V) — B(V)), ] + 2 pep® P g=1,2,...,0
Koy
Equations for the amplitudes and phases of the waves interacting in a weakly nonunear
medium [5, 6] follow from (2,13) and (2, 14) as a particular case,
Relations (1, 4) and (2, 8) also yield equations for a group of methods analogous to the

method of geometrical optics, To obtain these equations we expand (; into a series in
m

€= 2 C?"(x,r)p’f f=141,...,0471), Ci=C (b %7+

K==0
m
+ 2P W g=1,2...,0
-y

and, instead of equations for V,we seek the equations for ;{8 Moreover, A% in(1,10)
should be replaced by h(¥), where R(®) = A®) (£ = 2,3, ..., m) and B = AV —
-~ A (V) 8V / 9y, and the following expression used for F(s) ;

Idr (X)
B acy
PO 7o 2 an vy e=t2.m @19
o}

Inserting (2, 15) into (2, 8) and taking (2, 9) into account we obtain the expressions ana-
logous to (2,13) and (2, 14)

acix-1 aCik- ‘
oy g+ —5— [A (V) Ve ¥ = (B, )

(2.16)
(=141, 04r E=1,2...,m i=12..,0 k=23,...,m

{0} {0} .
" a*gz a‘:’: (AT Vs, ¥ = — (B, 9P} + (RO, 991 247
{f=i,2,..~tl}

We note that the system (2, 13), (2.14) is more suitable for use in analysis, as instead
of (I 4 r) m first order equations it contains ! < r equations of order not higher than
the degree of approximation, Being nonlinear, Eqs, (2,16) and (2,17) cannot be reduced
to the form (2,13) and (2, 14), although the converse is always possible,

8, To provide the substantiation of the asymptotic method considered,we must prove
that for the system (1,1) the difference between the exact solution and its m th approx~
imation satisfying the system (1, 12),is of the order u™ on the interval in question, We
shall prove this for the Cauchy problem, for the hyperbolic and symmetrical parabolic

systems,

To make the notation more compact, we shall write the systems (1,1) and (1,12) in
the form 3, A (u, 7,1, W)Uy + B (U, 221, ) = BF (8 Uy, Upn 2y £, 1) 3.4)
uf™ 4+ A, z,t, pul™ + Bum™,z,t,p0) =

= pf (@™, ul, uf™, z,t, p) + pmig™ (2, ¢, p) 3.2)

Here the dependence on the slow variables is included in the dependence on 2z and £,
and a single term is taken from the right-hand side of (1,1),
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Theorem 1, Let the systems (3,1) and (3, 2) satisfy the following requirements in
the region (<{t < 00, OCl <Pyo = 00 < U, Uy, Usy T< 002

1) A (u,z,t,p), B(u,zt W1, U, s, 2, t B)and g™ (z, ¢, p) are con-
tinuous in W, continuously differentiable in x and ¢ and twice continuously differentiable
in u, U, and u;.

2) Solutions u (z, ¢, p) and u™ (z, £, p) of the systems (3,1) and (3, 2) exist, are
continuous in W and twice continuously differentiable in x and ¢, and satisfy the initial
conditions u (z, 0, p) = @y (x, p) and u™ (2, 0, p) =@, (2, n),where @, and @,
are functions belonging to the class C? and [, — @, << Kp™+, where K is a constant,

3) The systems are hyperbolic and all n characteristics passing through any point on
the half-plane (2, Z) in the opposite direction, intersect the abscissa,

Then for any numbers X, X, and I a constant M and a value Ji, exist such, that

[um (z, ¢, W) —u(z, ¢, w) | << Mpm™t
forall 0Lt T

Xi<z<X,, 0 p< g
Note, If the function f is independent of u, and «; or depends on them linearly,
then it is sufficient to require that the functions #, f and g™ are continuuous in x and
¢ and to limit oneself to showing the existence of solution and initial conditions belong-
ing to the class (1,
Proof, We shall assume that u™ and u are known, Substituting them into (3,1) and
(3.2) we obtain identities in = and ¢. Let us subtract (3,1) from (3, 2)

@™ — )+ A ™) @™ — w4 [A @) — 4 @) e+ B u™) — B ) =
=p[f @™, u™, ™) —fu, ug up]+ "™ (@, 1) (3.3)

Now set 4™ — u = w.By the Hadamard lemma on finite increments we have
Au™)— A@w)=Cu™, yw=C, t, Yw
B ™) —Bu)=E@u™, ww=E(z, t, )w

@™, u™, u{™) — f(u, ugy up) = fo @™, u, wl™, ug, uf™, u) w +

+ /2 (u(m) u, u;(,cm)r Uxs ut(m)! u‘) wx+f1(u(m)’ u, u(lTn): Uxs ugm)v ul) wy

Functions C, E, 11, f; and f3 are continuously differentiable, and depend in the end on
z, t and p.Taking these relations into account we can write (3, 3) in the form

I — pf1] wg + [ A — pfa] wy + [Cug + E — pfs] w = p™*1g™ (3.9

where I is z-unit mawix, Since f, and f; are continuous, a value p, exists such that
for all 0 < p < Wo'system (3, 4) remains hyperbolic in a bounded closed region O which
shall be defined later, In addition there exists a linear transformation w = Huw, with a
continuously differentiable nonsingular nfatrix ¥ which reduces (3, 4) to the form

wy, + Ai(z, & Wwi + Bi(z, t, p) wr = p™ g (z, p, 2) (8.5)
where A, is a symmetric, nonsingular matrix [10] of class €2,

Let us perform the substitution w, = ¢*' z, Then (3, 5) yields the following expression

for z (x, t) 2
5+ Aizg 4 (Bial) z = p™le gy (3.6)

By virtue of the symmetry of the matrix 4, the identity
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(2, Ai2)x = (22, Ay2) + (2, Ay25) + (3, A122)

implies
2 (z, A1zy) = (z, Az)y — (2, A1,5) (G

Following Courant [10] we scalar multiply (3,6) by z and take (3.7) into account, to
OPRIN 1, o, 2+ 1a (55 D+ (o (Br ol — odi ] 2) = B (5, g2) a8
g (z, ) =¢*g1 (z, )

Let us choose the value of the parameter « large enough for the matrix B, = B; +
+ @l — 2414 to be positive definite in the region D; 0t Ty Xpin < % < Xmax
(0 < B < Mo)s Where X is the abscissa of the point of intersection with the z -axis
of the characteristic passing through the paoint
(X,, T) at the smallest angle of inclination
relative to this axis and X, is the abscissa
of the point of intersection with the =z -axis
of the characteristic passing through the point
(X4, T) at the greatest angle of inclination
to the = -axis (see Fig, 1),

Let z; and z, be any numbers defined by
X, < &y < #y Xy, and ¢, any number
0 <ty T. We draw the extreme charac-~
teristics through the points Qy(z1, ¢,) and Q, (z,,%,) and denote by », and P, the corres~
ponding points of intersection of these characteristics with the abscissa (see Fig, 1),
Let us now integrate the identity (3, 8) along the curvilinear trapeze P;P,Q,Q;. Applying
the Green formula we obtain

Fig. 1.

N QS [(z, 2) + (2, A12)y] dzdt = A S 2y 2) g+ (2, A12) ng) ds =

2 ) 2
PiP2Qa Qs PP:Q:Q:
=% g zzdx-—% g z2dz—1-_%_ (2, 2) nt (2, A1z) ng) ds =
01Qs P\Ps PiQi1P:Q:
=_;_ g z2da:—...;_ Q z‘ldz—}-.iT (7 <z,[A1+ ;ﬁl]z> ds (39
Q:Qs P3P PiQeFP2Qs ¥

where n, and n¢ denote the components of the unit normal,

Let us denote by A, the largest and by A, the smallest eigenvalue of the matrix 4,
On the characteristic P,Q, we have n;/ ny = — A, and on PyQ, we have ny/ ny = — Ay,
For a symmetric matyix
(z, A1z) , %2 = min (z, A22)

@, 2) (z, 3)
Therefore Ai(z, z)>(z, A1z)and A (z, 2) << (21, A12) OF (z, [A1--MI] 2) << O and (z, [4) —
w— A2l]2)>>0.Since n, <0 on PiQ1 and n, >0 on P:Q:, we have

A g - (z, [Al + :_:I] z> ds> 0 (3.40)

2 )
P1Qi1+P1Qs

M= max

Moreover, by virtue of the initial conditions
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e < KeXp? ™D, Y =X, X;, Ki=K|H?| (3.41)
PPy
where | H-| denotes the norm of the matrix #-! The matrix B, is positive definite,
therefore S% (2, Baz)dz dt S 0 (3.42)
PrP2sQy

Taking into account (3, 9) — (3,12) and integrating (3, 8), we obtain the inequality
Xy
% S 2 (z, tojdx < p™H FSR (z, g)de dt + _i.. K2 Xp2m+) (3.13)
EN py sth:
Let us denote by M;/ 2 the maximum value of the modulus of the vector function g,
in the region D, i,e. M; =2 max|e™ ga(z, t, p)|, (z, ) ED (O p po)- Then

X3 e %2 (D)
\ e wae<mwmr (et (1o, 1az 4 Koxpmsn (3.44)
% 0 @

where x = @, (t) is the equation of the characteristic P,Q, and = = @3 (¢) of PyQy. The
integral wa \1)
| z{x, t)1dz
@1 (D

being a function of ¢, is of the same order of magnitude, namely p™ for all values
of ¢ including ¢t =0 .

indeed, let it attain its maximum value at some t* {0 < t* < Lo). Setting in (3,14)
t = *,we obtain

X3=%P2 (lo) @z (%)
2 (z, to)dz <TMyp™* S |2 (2, t*)|dz 4+ K2 Xp? (m+1)
Ty (10) €1 (%)
By virtue of the Schwartz inequality we have
@3 (o) @2 (%)
g 2z t0) {dx>2< T X M™% S [z(z, t*)|dz 4 K2X2p? (m+1)
D1 ifo) (%)

Setting ¢, = t*, i,e. integrating (3, 8) along the trapeze P P H.R, where R, (¢, (t*), i*)
and Ry (@, (t*) t*), we obtain
@1 %) . s (%)

l2(z, )| dx) < TXMp™H \ |2(z, t%) |dz + K2X2 (%40 (3 45)
@1 {1 R
from which follows

i 1 4K\
12(z, %) |dz < Map™, Mp= TTXIM‘+ (M12+ T‘) J 3.16)

fPl'(t')
By the definition of #* we have

®3{lo) Pz {I*)
i |z (z, to)| dz \ |z (x, 1%)] dz
‘D‘l(fo) (Pl(tl‘)

or, with (3,16) taken into account
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X
Smx, 1| dz < Map™ @347
Xy
Having obtained the estimate for the integral and taking into account the boundedness
of z (=, t) and 2. (z, ?) in the region D we can estimate the integrand function, If the
value of the integral is fixed,the maximum value of the integrand function belonging to
class Ct-is %
5 |zldz= (max |z )
max |z,
X1

Consequently, in the general case we have
EA X3

2P gmax isls{ 121degmax |z { 1142
Xy Xg
or, in accordance with (3,17),
| 2 |2 max [wz, | Map™*! (3.18)
This yields the following estimate for w, (x, #)
lwi P < max | w:_ | Mpe®T p™*1 (3.19)
It remains to estimate w (z, t). Since w; = H-'w, we have
max |wr, | < [ H [max |wyl | Hy [max | w]
Let us denote max | w, |/ max | w| = S. Taking into account (3,19) we obtain
lwPEPIH Pl e P <IHP (HS 4| Ha ') Mae*T max | w]

™ — i My™, M= TXET [HPGHS +1HAD (m + e 52

which completes the proof of the theorem,

The parameter o, appearing in the proof characterizes the degree of instability of the
homogeneous system N (u) = 0. The asymptotic method can be applied to systems
of arbitrary degree of instability. However, when the nearly periodic solutions of (3,1)
are considered, @ must be of the same order of magnitude as i, in which case €*T is of
the order of unity when 7' << 1/, Then, with H, S and g, having the order of unity
on anv finite intervals of z and ¢, the difference u(™ — u is of order U™ on the interval
XT ~1/p(ege X ~1/Vp, T~1/Vp.

From the proof given above we can infer that an analogous theorem holds for symme-
trical parabolic systems which have at least two characteristics at each point of the half
plane x, ¢ On moving in the opposite direction all characteristics intersect the abscissa
axis and the right-hand side of (3.1) is independent of u, and 4;. In this case we obtain
in place of (3, 4) the following symmetrical system

w; + Aw, + [Cup + E — pfslw = pm*t gm

The substitution w = Huw, ceases to be necessary and all the arguments that follow,
remain in force,
Theorem 2, Let the system

u,+ A,z t, p)u,+ Bzt =0 (3.20)

satisfy, in the region — o0 < u, z, << 00, 0 € 1, p << oo, the following conditions:
1) A is a symmetric matrix continuously differentiable in all its arguments,
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2) B is continuous in  and £, and continuously differentiable in u and p.

3) At least two characteristics pass through each point of the half plane &, ¢ and, on
moving in the opposite direction, all characteristics intersect the z -axis,

4) ulz, 0, w =9z, psCh

Then u (z, ¢, W) is a continuously differentiable function for all 0 < o0

Proof, Letu(z f, wandu (z, ¢, p + Ap) be known solutions of the system (3, 20).
Subtracting the corresponding identities we obtain

up(p - AR — w0 b A [u B4 AR), B AR [ (B 4 AR — 1y ()] -
A [u (4 A, b Ap] — A fa (), B ug (W) + B lu -+ Ap), p-+ Ap] —
—Blu(), B4 Ap] - Blu@), b+ Ap] — Blu@), p] =0

(the arguments = and ¢ are omitted here), Applying the Hadamard lemma to the corr-
esponding differences we find

Bup 4 ABug + C (1 Ap) uzAu+ D, Ap)uAp 4 E (@, Ap)Au -+ F(n, Ap) Ap =0

where C, D, E and F are continuous functions of =, ¢, p and Ay, Treating Au = u (p -+
-+ Ap)e~ u (u) as an unknown function, we obtain for it the following linear system:

Aug+ AAug 4+ B°Au= Apf°, B°=Cuy-+E, [°=— Duy—F 3.21)

which satisfies the conditions of Theorem 1, A constant C° therefore exists such that
| Au| < €°| Ap ), i.€. u (=, ¢, p) is continuous in p.
Dividing (3,21) by Ap we obtain

Au Au o An o

ar AlEE B2t = {3.22)

(&) (@)t m=
which we shall now consider together with the linear system
bg ] + Azx + BZ == ]:o (3.23)

The solution z (z, ¢, i, Au) of the latter is a continuous function of the parameter Ay,
including Ap =.0. Considering this solution with the initial conditions of (3,22) we ob-
tain, by virtue of its uniqueness, the solution % (, ¢, u, Ap) = Au/ Ay, and the follow-
ing limit exists . .

lim z(z t, B, Ap) =z (z, ¢, p, 0) = du}op
Au—>0

To prove that u, is continuous we set in (3,22)

Ap — O, 6119 ] Ot 4 A@uuf Oz - [ Ay, +BP-] U, =— Bp‘ — Ag“x
This system, linear in u, satisfies the conditions which ensure that it solutions are
continuous in p. Thus u (z, ¢, u) € CL

we shall show that if F{ is chosen in such a manner that a bounded solution of (1,10)
for w® exists, then under the restrictions ensuing from Theorem 2, u(™ exists defined
by (1. 5) and (1, 7) and satisfying (1.12), Since Cy, . . ., €}, can be assumed to be infi-
nitely differentiable functions of % and T, conditions of the Theorem 2 hold for the
coefficients of the equation Luw'™ = A — FV and wV (z, 1, 1, T) & C'. Consequently
B [l wi =1 (2, ¢, %, 1) € C* and v® & C.. In general, since »" are deter~
mined with the help of recurrent relations, then w(™V & ¢! implies that vV & ¢
(:=2,3, ..., m) Taking into account the composition of g™ (x, ¢, %, ) we find that
g™ & 1, i,e, conditions of the existence theorem hold for (1,12),
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Applying Theorems 1 and 2 to the systems (1,1), (1.12),we are in position to state
the basic result in the form of the following theorem,

Theorem 3, Let the system (1,1) be hyperbolic in the region 0 <C £, 7<C o0
— 00 << U, Uy, U X, ¥, << oo and satisfy the following requireinents within this
region:

(1) 4, Band f, are differentiable m -- 1 times in u, u, and u,.and continuously
differentiable in z ¢, Y and T.

(2) A solution of (1,1) exists, twice continuously differentiable in z and £,and con-
tinuous in .

(3) Through each point of the (z, t)-plane pass n characteristics and when moving in
the opposite direction, all these characteristics intersect the x-axis,

(4) Let u™ be defined by the formulas (1, 5) and (1. 7) where w(#) are solutions of
(1.10) and F¥) are chosen so, that solutions of (1,10) restricted in the sense of (1,11)
exist when the initial conditions follow from

[ud (z, 0, 1) —u (2,0, p) | < KDt (1=1,2,....m KO =const)
Then p, exists such that for all ( << o and 2z, ¢ taken from the interval

XT~1/}L lu(m)(xyt,ll)—u(x,t,M)I<M(m)um

The magnitude of the constant M(™) depends on max |gm (z,¢,, T}| and estim-
ation of the latter represents a problem 1interesting in itself,

Analogous assertion is valid for the parabolic system

u; + A(u,I,t,X,T)ux+ B(uyx’tv X,T) =Zp'1fi (u’xst,)(n")

satisfying the following conditions in the region — oo <u, &, ¥ << ;0 7, ¢ <
<< oo:

(1) A, Band f; are differentiable m -1 times in © and continuously differentiable
in x, ¢, % and T.

(2) A solution u (z, ¢, n) & C* of this system exists,

(3) At least two characteristics pass through each point of the half plane (x, ¢)and,
when moving in the opposite direction, all these characteristics intersect the z -axis,

The authors express their gratitude to A, V, Gaponov for continued interest in this
work and to V, N, Gol'dberg for useful discussions,
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A nonlinear, autonomous system of order ( 2k 4 2) is perturbed by application
of damping which is analytic and sufficiently small in norm, The system we con-
sider resembles a Liapunov system [1], in a different sense however to that given
in [2]. The perturbed system is transformed in such a manner that the unperturbed
system transforms into a quasilinear, nonautonomous system of order 2k [3], If
the general solution to the unperturbed system is known, then the process of in-
tegration of the system of variational equations can be reduced, according to
Poincare [4], to quadratures and this is illustrated with the example of a plane
spring pendulum,

1, Transformation of the equations of motion, Consider a class of
Liapunov systems (see [1], Sect, 33) with damping, described by the following system
of equations;
Bufdr? - u—U(u,u, 01, 0y ¥y V1,0, V) = — 2eFo(u, v1,..., 7)) (1.1)
a2 fd1? 4 a1+ . GV — Vi @y, 01, ey Vs U100y U )=
=—2F (u,vn,..,v,) €>0,%x=1,..,4%
Here a dot denotes a derivative with respect to Tt ; @, = 8y %, = 1,...,k) are real con-
stants; U, V,,...,.Vy, Fo, Fy,...,Fyare real analytic functions; the expansions for Fy, F1,
---+Fi begin with the terms of at least first order and those for U, V,...,Vy with terms
of at least second order, We shall assume that the unperturbed system (1.1),i.e, (1.1)
in which & =0, admits a first integral which must be an analytic function of the variables
Uy U, V1y...s Vg, ¥1,..., ¥k and have the form [1]
H=u?4ud WO, vy 01,00 ) +
4 Sau, v, V1, Ty VL e v, ) =@ n >0 (1.2)
where W is a quadratic form and Sj is a set of terms of order not lower than the third,



